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Image registration method based on improved Harris
corner detector
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Harris corner detector is a classic tool to extract feature. It is stable to illumination change and rotation
but unstable to more complicated transform. In order to register images with different viewpoints, we
extend Harris corner detector to scale-space to gain invariance to scale change, then we apply affine
shape adaptation to the scale invariant point until convergence is reached, giving it invariance to affine
transform. With these local features, we use general feature descriptor and matching algorithm to generate
matches and then use the matches to calculate the geometric transform matrix, which enables the final
registration. Result shows that our algorithm can get more accurate matches than scale invariant feature
transform SIFT, and less difference exists between registered images.
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Image registration is a process of finding a proper ge-
ometric transform between two images that can align
corresponding points in them. It is the foundation of
applications, such as image fusion, medical image pro-
cessing, and three-dimensional (3D) image reconstruction
and is widely used in medical imaging and remote sens-
ing. Recently, image registration has been a topic widely
discussed, and methods with high efficiency and accu-
racy have been developed. For example, Guizar-Sicairos
et al. proposed to use nonlinear optimization and matrix-
multiply discrete Fourier transforms to register two-
dimensional (2D) images with sub-pixel accuracy[1]. In
medical image registration, Modersitzki proposed to inte-
grate the concept of local rigidity to the Flexible Image
Registration Toolbox (FLIRT), giving extra constraint
for rigid object in non-rigid optimization process[2].

In medical image registration, many methods, like the
maximization of mutual information (MMI) method[3],
treat the registration process as an optimization prob-
lem and use this measure as an object function to find
the best transform. However, because of the diversity
of image registration problem, one framework for image
registration is to assume that the transform between im-
ages is of a certain kind (rotation, scaling, etc.), then
to use local feature matches to calculate the transform
matrix. For example, when translation, rotation, and
scaling are present, a registration method was proposed
to deal with that situation[4]. In this framework, local
feature matching is of utmost importance. A good lo-
cal feature should generally have a clear mathematically
well-founded definition, also, the local image structure
around the local feature is rich in terms of local informa-
tion contents, such as derivative information[5], curvature
information, etc. Most importantly, a good local feature
should be tolerant to image noise, changes in illumina-
tion, scaling, rotation, as well as changes in viewpoint.

The most classic local feature is Harris corner[6] detec-
tor, it is stable to illumination change and rotation but
unstable to more complicated transform. Scale invariant

feature transform (SIFT)[7] detector, which takes advan-
tage of the scale invariant nature of scale-space represen-
tation, is stable to scale change but not very good at lo-
cating corners which often correspond to significant local
structures. In this letter, we propose a method that can
register images with affine and scale transform. Begin-
ning with traditional Harris corner detector, we extend
it to scale-space, giving the detector invariance to scale
transform, and then we apply affine shape adaptation,
giving the detector invariance to affine transform. We
use default descriptor and matching algorithm to gen-
erate matches, and use those matches to calculate ge-
ometrical transform parameters. Finally, we transform
one image using the geometrical transformation matrix
to align with the other image.

Geometric transform between images is the founda-
tion in our image registration. To describe the transform,
we introduce projective geometry[8]. Unlike traditional
Cartesian coordinate, a point in projective coordinate is
defined as a vector of three elements: the first two are
x and y, and the third coordinate is introduced to deal
with the situation of infinite point. The third element
is 1 when the point is not infinite and 0 when the point
is infinite. Because when divided by 0, any small value
becomes infinite, using projective coordinate makes an
infinite point homogeneous with any other point in the
space. A geometric transform can be written in matrix
form as
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A geometric transform can be further divided to
isometies, similarity transforms, and affine transforms.
Here we focus on affine transforms because of its ubiq-
uity: (
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. (2)
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Affine transform has 6 degrees of freedom (DOFs) (there
are 6 variables in the transform matrix). To solve a linear
system with 6 variables, we need at least 3 matches.

Local feature is the local description of a specified
structure or characteristic of image. Sometimes local fea-
ture is referred to as interest point, key point, etc. Clas-
sical Harris corner point is defined as a point which has
great variance of intensity in all directions.

Without loss of generality, we assume that a gray-
scale 2D image is denoted as I(x, y). Taking an im-
age patch over the area (u, v) and shifting it by (x, y),
the weighted sum of square difference between these two
patches, S, is given by

S(x, y) = (x, y)A
(

x
y

)
,

A =
∑
u

∑
v

w(u, v)
[

I2
x IxIy

IxIy I2
y

]
,

(3)

where the matrix A is referred to as the second moment
matrix, it consists of the first order partial derivatives of
the intensity function of the image I(x, y), denoted as

Id =
∂

∂d
I(x, y) (d = x, y).

Considering that the contribution of each point in the
image patch surrounding the corner point should be
different, a weighing function w(u, v) is used to assign
bigger weight to points which are closer to the corner
point and smaller weight to those at the boundary. Typ-
ically a Gaussian function is chosen as the weigh function:

w(u, v) = e−(u2+v2)/2σ2
.

According to Ref. [6], a measure for a point’s likelihood
of being a corner is introduced as

Mc = λ1λ2 − κ(λ1 + λ2)2

= |A| − κ[Tr(A)]2, (4)

where A is a nonsingular 2×2 matrix, thus it must have
two eigenvalues λ1, and λ2. Using the determinant and
trace of the matrix A and an empirical value κ (usually κ
is assigned a value between 0.04 and 0.15), we can calcu-
late a measure for a point’s likelihood of being a corner.

When we have calculated all the Mc measures for each
point in an image, we can choose those with Mc mea-
sures above a certain threshold as Harris corner points.
Classical Harris point detector is a reliable local feature
extractor. It is stable to illumination change and rota-
tion, but it is not stable to affine and scale transforms.

Because of its inability to deal with affine and scale
transforms, we introduce an improved Harris detector.

Considering the scale transform, we choose scale as a
new dimension in addition to spatial dimension. The
motivation for this choice is that real-world objects are
composed of different structures at different scales, in
contrast to idealized mathematical entities such as points
or lines, they appear in different ways depending on the
scale of observation. For example, the concept of a tree is
appropriate at the scale of meters, while concepts such as
leaves and molecules are more appropriate at finer scales.

One way to represent an image I(x, y) as its scale space
representation L(x, y, t) with the addition of the scale co-
ordinate t is to take advantage of the low-pass nature of
Gaussian filter:

g(x, y, t) =
1

2πt
e−(x2+y2)/2t. (5)

Thus we can generate a Gaussian scale-space representa-
tion, formulated as

L(x, y, t) = g(x, y, t)× I(x, y). (6)

In order to apply the traditional Harris corner detector
at every scale of the Gaussian multi-scale representation
L(x, y, t), the second moment matrix is redefined as

µ(x, y, t, s) = g(x, y, s)

×
[

L2
x(x, y, t) Lx(x, y, t)Ly(x, y, t)

Lx(x, y, t)Ly(x, y, t) L2
y(x, y, t)

]
,

(7)

where g(x, y, s) is a Gaussian function with s being the
integration scale parameter, Lx(x, y, t) and Ly(x, y, t) are
the first order partial derivatives of image L(x, y, t). Ac-
cording to Ref. [9], the integration scale parameter s and
the scale coordinate should maintain s = γ2t, where γ is
an empirical value usually chosen in the interval [

√
2, 2].

Using the second moment matrix given in Eq. (7) and
the measure for a point’s likelihood of being a corner in
Eq. (4), we apply traditional Harris detector at each scale
and get multi-scale Harris corner detector, naturally in-
variant to scale transform.

The multi-scale Harris corner detector is a scale-
invariant detector. However, it is not invariant to ar-
bitrary affine transform. According to Ref. [10], affine
shape adaptation is a methodology for iteratively adapt-
ing the shape of the smoothing kernels in an affine ker-
nel group to the local image structure in neighborhood
region of a specific image point. Provided that this it-
erative process converges, the resulting fixed point will
be affine invariant. The initial points of the algorithm
come from multi-scale Harris corner detection. Hence,
the convergent points are stable to both scale and affine
transforms.

For convenience of description, in the following part,
interest point (x, y, t) is denoted as x or xw. Given an
initial point x(0) = (x, y, t), the iteration process is as
follows.

Step 1: Initialize a transform matrix U (0) to identity
matrix; let the number of iteration k ≥ 0. A local window
W is centered at the interest point x and transformed by
transform matrix U which is initialized by identity ma-
trix and updated by concatenating an additional square
root of the second moment matrix at each iteration step:

U =
∏

k

(µ−
1
2 )

(k)
U .

Step 2: Normalize the window W (xw) = I(x) centered
on x

(k−1)
w = [U (k−1)]−1x(k−1). The iterative affine shape

adaptation method works in the transformed image do-
main. The local window centered on the interest point
x(k) is transformed by U , and this operation is called U-
transformation. At first, the matrix U is initialized by
the identity matrix, and then, through each iteration, it
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is concatenated with an additional square root of the sec-
ond moment matrix. In the kth iteration, x

(k−1)
w refers

to the interest point in the transformed domain, which is
specified by the subscript w. Obviously, the initial value
is x

(0)
w = (U (0))−1x(0) = x(0).

Step 3: Select integration scale:

σ
(k)
I = arg max

σI=tσ
(k−1)
I ,

t∈[0.7,1.4]

σ2
I [Lxx(x(k−1)

w , σI] + Lyy[x(k−1)
w , σI)],

Ldd =
∂2

∂d2
[g(x, y, t) ∗ I(x, y)] (d = x, y).

The normalized Laplacian[10] is used here to find the in-
tegration scale by finding the maximum over scale. The
finding process is also an iterative process: by multi-
plying t, the scale parameter is altered at each iteration
at random direction until the maximum of normalized
Laplacian is reached. Similar process is used in the next
step, and we omit the implementation details for simplic-
ity consideration.

Step 4: Select the differentiation scale:

σ
(k)
D = arg max

σD=sσ
(k)
I ,

s∈[0.5,0.75]

λmin[µ(x(k−1)
w , σ

(k)
I , σD)]

λmax[µ(x(k−1)
w , σ

(k)
I , σD)]

,

where λmin[µ(x(k−1)
w , σ

(k)
I , σD)] and λmax[µ(x(k−1)

w , σ
(k)
I ,

σD)] are the minimum and maximum eigenvalues of
2×2 matrix µ(x (k−1)

w , σ
(k)
I , σD). The differentiation scale

is determined by finding the maximum of normalized
isotropy over scale, which is the ratio of the two eigen-
values of the second moment matrix.

Step 5: Spatial localization:

x(k)
w = arg max

xw∈W (x
(k−1)
w )

( ∣∣∣µ(x ,
wσ

(k)
I , σ

(k)
D )

∣∣∣

− κ[Tr(µ(xw, σ
(k)
I , σ

(k)
D ))]2

)
.

According to the definition of the second moment matrix
µ in Eq. (7), four parameters are needed to calculate it.
Firstly, the spatial location, i.e., x and y are given by
x

(k−1)
w ; then the integration scale is determined by choos-

ing the maximum over scale of the normalized Laplacian;
at last, the differentiation scale is determined by choos-
ing the maximum of normalized isotropy. Having µ, we
detect the spatial localization x

(k)
w by find the maximum

of the Harris measure nearest to x
(k−1)
w .

Step 6: Transform back to the original reference frame:

x(k) = x(k−1) + U (k−1)(x(k)
w − x(k−1)

w ).

Given the second moment matrix µ, the new point x
(k)
w

and the old one x
(k−1)
w , a new interest point x(k) can be

found. We obtain a vector of displacement to the nearest
maximum in the U-normalized window W . The location
of the initial point is corrected with the displacement
vector back-transformed to the original image domain.

Step 7: Compute the square root of the second moment
matrix µ

(k)
i = µ−

1
2 (x(k)

w , σ
(k)
I , σ

(k)
D ); prepare the square

root of the second moment matrix for U update.
Step 8: Concatenate transformation U (k) =

µ
(k)
i U (k−1) and normalize U (k) to λmax(U (k))=1. In

this step, the matrix U is updated for the next iteration.
Step 9: Go to Step 2 if 1 − λmin(µ(k)

i )
/

λmax(µ
(k)
i ) ≥

0.05; otherwise stop, so that convergence is achieved.
By checking the local isotropy of the second moment

matrix µ
(k)
i and comparing it with a tolerance of error,

we can decide whether convergence is achieved or go on
iteration. The local isotropy can be measured by the
smaller eigenvalue of the square root of the second mo-
ment matrix divided by the bigger one.

Until now, we have extended the traditional Harris
corner detector to multi-scale Harris corner detector
followed by an iterative search for affine invariant fea-
ture. Theoretically, the improved Harris corner detector
should be able to detect local features in scale and affine
transformed images. Next we present the experimental
results.

We choose graffiti images to test our algorithm and
compare it with traditional registration methods. The
images were deliberately taken from different angles, cre-
ating a natural affine transform. We first took one of
the images from straight on, then we moved to the left
of the first position and took the second one which was
to be registered. The corresponding points were shown
in the same color. They all laid in areas with significant
angle structure and were more or less different because
of the shifted viewpoint.

Figure 1 show the Harris corner scattering patterns
before and after the affine shape adaptation. In Fig.
1(a), five layers of Harris points are detected using the
multi-scale Harris corner detector; however, if all five lay-
ers of points are projected into the bottom layer, points
at different layers would stack upon each other and form
several point clusters which are usually related to one
single characteristic structure. This can cause inaccu-
rate corner location as well as unnecessary computation.

Fig. 1. Harris corner scattering patterns (a) before and (b)
after affine shape adaptation.
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Fig. 2. Matching results from (a) SIFT and (b) our algo-
rithms.

Fig. 3. Histograms of difference. (a) Our algorithm and (b)
SIFT algorithm.

Fig. 4. Difference images of (a) SIFT and (b) our algorithms.

In Fig. 1(b), after applying the affine shape adaptation,
many point clusters disappear and only several points are
left, which is the result of the iterative process that leads
to convergence. These convergent points correspond to
the characteristic structure more accurately and also save
computation burden.

Figure 2 show the matching points from SIFT algo-
rithm and our algorithm. As we can see, SIFT gener-

ates too many interest points and matches and needs
further processing. At the same time, our algorithm gen-
erates less key points and matches but with high correct-
ness, which makes the subsequent calculation of trans-
form very promising. Besides, our algorithm extracts in-
terest points from corner areas while SIFT has no pref-
erence to corner point. This allow us to gain better ac-
curacy than SIFT.

Figure 3 shows the histograms of difference of over-
lapping parts between the registered image and original
image, Figure 4 give the difference images. As we can
see, our algorithm has most of its elements lying in the
lower half, while SIFT has some of its element spreading
from 0 to over 150. Our algorithm has achieved better
registration result.

In conclusion, we present an image registration method
based on improved Harris corner detector. We assume
the transform to be scale and affine transforms, and fo-
cus on improving the traditional Harris corner detector,
giving it invariance to scale and affine transforms. Using
the detector, we find the corresponding point match and
achieve satisfactory results.
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